# **ASSABET RIVER BASIN**

1989

## Part A: Water Quality Data

## Part B: Wastewater Discharge Data

EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS John P. DeVillars, Secretary MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION Daniel S. Greenbaum, Commissioner DIVISION OF WATER POLLUTION CONTROL Brian M. Donahoe, Director

PUBLICATION #16,466-37-25-10-90-C.R. APPROVED BY: RIC MURPHY, PURCHASING AGENT

#### NOTICE OF AVAILABILITY

#### LIMITED COPIES OF THIS REPORT ARE AVAILABLE AT NO COST BY WRITTEN REQUEST TO:

#### MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION TECHNICAL SERVICES BRANCH WESTVIEW BUILDING, LYMAN SCHOOL GROUNDS WESTBOROUGH, MA 01581

Furthermore, at the time of first printing eight (8) copies of each report published by this office are submitted to the State Library at the State House in Boston; these copies are subsequently distributed as follows:

- \* On shelf; retained at the State Library (two copies);
- \* microfilmed; retained at the State Library;
- \* delivered to the Boston Public Library at Copley Square;
- \* delivered to the Worcester Public Library;
- \* delivered to the Springfield Public Library;
- \* delivered to the University Library at UMass, Amherst;
- \* delivered to the Library of Congress in Washington, D.C.;

Moreover, this wide circulation is augmented by inter-library loans from the above-listed libraries. For example, a resident of Winchendon can apply at the local library for loan of the Worcester Public Library's copy of any DWPC/TSB report.

A complete list of reports published since 1963 is updated annually and printed in July. This report, entitled "Publications of the Technical Services Branch, 1963-(current year)," is also available by writing to the TSB office in Westborough.

#### ASSABET RIVER BASIN

1989

#### WATER QUALITY DATA

#### WATER DISCHARGE DATA

Prepared by:

NORA E. HANLEY ENVIRONMENTAL ENGINEER

#### MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER POLLUTION CONTROL TECHNICAL SERVICES BRANCH WESTBOROUGH, MASSACHUSETTS

EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS JOHN P. DEVILLARS, SECRETARY

DEPARTMENT OF ENVIRONMENTAL PROTECTION DANIEL S. GREENBAUM, COMMISSIONER

DIVISION OF WATER POLLUTION CONTROL BRIAN M. DONAHOE, DIRECTOR

SEPTEMBER 1990

TITLE: Assabet River Basin 1989, Part A/B

DATE: 5-25-90

AUTHOR: Nora E. Hanley, Environmental Engineer

REVIEWED BY:

M. Hogan aul

Paul M. Hogan, Basin Planning Supervisor

APPROVED BY:

nom

Alan N. Cooperman, Supervisor Technical Services Branch

## TABLE OF CONTENTS

| <u>item</u> |                                                                       | <u>PAGE</u> |
|-------------|-----------------------------------------------------------------------|-------------|
| I           | Foreword                                                              | 4           |
| II          | List of Tables                                                        | 5           |
| III         | List of Figures                                                       | 6           |
| IV          | Introduction                                                          | 7           |
| v           | Physical Characteristics of the Assabet River                         | 8           |
| VI          | Water Quality Sampling Data                                           | 16          |
|             | A. Powdermill Impoundment/Assabet River Survey Data                   | 16          |
|             | B. Wastewater Treatment Plant/Assabet River Survey Data               | 25          |
|             | C. River Flow Data - USGS Gage at Maynard                             | 29          |
| appei       | NDIX A: Analytical Methods Used at the Lawrence<br>Experiment Station | 31          |
| APPE        | NDIX B: Classification of Sludge for Land Application                 | 35          |

#### FOREWORD

The Massachusetts Division of Water Pollution Control was established by the Massachusetts Clean Water Act, Chapter 21 of the General Laws as amended by Chapter 685 of the Acts of 1966. Included in the duties and responsibilities of the Division is the periodic examination of the water quality of various coastal waters, rivers, streams and ponds of the Commonwealth, as stated in Section 27, Paragraph 5 of the This section further directs the Division to publish the results of such Acts. examination together with the standards of water quality established for the various waters. The Technical Services Branch of the Division of Water Pollution Control has, among its responsibilities, the execution of this directive. This report is published under the Authority of the Acts and is among a continuing series of reports issued by the Division presenting water quality data and analyses, water quality management plans, baseline and intensive limnological studies and various special studies.

## LIST OF TABLES

.

| TABLE | TITLE                                                                                | PAGE |
|-------|--------------------------------------------------------------------------------------|------|
| 1.    | Assabet River Basin Classification                                                   | 10   |
| 2.    | Location of Sampling Stations                                                        | 13   |
|       | Powdermill Impoundment/Assabet River Study                                           |      |
| 3.    | Field Data: 8-9-89                                                                   | 17   |
| 4.    | Time-Temperature-Dissolved Oxygen: 8-11-89                                           | 18   |
| 5.    | Results of Laboratory Analyses: 8-9-89                                               | 19   |
| 6.    | Nutrient Data: 8-9-89                                                                | 20   |
| 7.    | Results of Laboratory Analyses: 8-9-89                                               | 21   |
| 8.    | Powdermill Impoundment Trophic Status                                                | 22   |
| 9.    | Metals Data: 8-9-89                                                                  | 23   |
| 10.   | Sediment Data: 8-9-89                                                                | 24   |
|       | Wastewater Treatment Plant/Assabet River Survey                                      |      |
| 11.   | Field Data: 8-23-89                                                                  | 26   |
| 12.   | River Stations: Results of Laboratory Analyses: 8-23-89                              | 27   |
| 13.   | Wastewater Treatment Plants: Results of Laboratory<br>Analyses: 8/22-23/89, 8/8-9/89 | 28   |

#### LIST OF FIGURES

| FIGURE | TITLE                                                               | PAGE |
|--------|---------------------------------------------------------------------|------|
| 1      | Assabet River Profile                                               | 12   |
| 2      | Assabet River-Powdermill Impoundment: Location of Sampling Stations | 14   |
| 3      | Location of Sampling Stations - Assabet River Basin                 | 15   |

#### INTRODUCTION

This report is a compilation of the results of field and laboratory examinations of the Assabet River and its wastewater discharges during the summer of 1989 by the Technical Services Branch (TSB), Division of Water Pollution Control, Department of Environmental Protection (DEP).

Two studies, both concerned with nutrient loading effects on the Assabet River, are presented in this report. The first study involved the effect of the Maynard WWTP discharge on the Powdermill Impoundment and on the Assabet River downstream. The second study was a preliminary assessment of Assabet River wastewater treatment plant (WWTP) discharges and their worst-case effects on a nearby downstream station. Follow-up surveys of each of the study areas are planned for coming years.

Chemical and bacteriological samples were transported to the Lawrence Experiment Station (LES) of the DEP where they were analyzed according to procedures set forth in the most current edition of the American Public Health Association's <u>Standard</u> <u>Methods for the Examination of Water and Wastewater</u>. However, dissolved oxygen determinations were made by Technical Services Branch personnel using either the Winkler method, or the Hydrolab field instrument. In addition, water temperature and pH measurements were made at the time of sample collection.

River flow was not measured by TSB personnel during the surveys. Flow data collected by the United States Geological Survey (USGS) at the USGS gaging station on the Assabet River in Maynard is included in this report. The data are intended to give an indication of the flow regime of the river during the sampling.

Personnel from the four municipal discharges on the river, Westborough, Marlborough West, Hudson, and Maynard, collected 24-hour composite samples using WWTP equipment. The samples were then picked up by TSB personnel for delivery and analysis at LES. The 24-hour composite samples are indicated in this report by bracketing the days over which the sample was taken, e.g., 8/22-23/89.

#### PHYSICAL CHARACTERISTICS OF THE ASSABET RIVER

The Assabet River, originating in impounded swamplike land in southwestern Westborough, flows through several highly populated areas including Westborough, Northborough, Hudson, Maynard, and Concord, until it joins with the Sudbury River in Concord to form the Concord River. It currently receives major discharges from four municipal wastewater treatment plants and a state prison treatment plant.

The varying physical characteristics of the Assabet River play a critical role in the chemical and biological activities which occur in the river. The reoccurring presence of dams and the slow moving, swampy impoundments they create are vital factors in the water quality of the Assabet River. Table 1 lists the assigned water use classification of the Assabet River and its tributaries. Figure 1 shows the Assabet profile, with changes in elevation, and location of dams and wastewater treatment plant discharges. In the following description, the mile point from the confluence with the Sudbury River is shown in parenthesis.

The Assabet River begins at the outlet of the George H. Nichols Multiple Purpose Dam in the southwest section of Westborough. The dam creates a small impoundment of about 0.6 sq. mi. which collects water drainage from an area of about 7 sq. mi. much of which is swampland. The dam was intended to provide fish and wildlife habitat and low flow augmentation for pollution abatement. Decaying organic matter formed by the insufficient removal of trees and roots when the area was flooded produces inferior water quality within the impoundment. In addition, proper flow regulation is absent. Water which does flow through the dam, however, is aerated, and the resulting water quality in the newly emerging Assabet is good as far as dissolved oxygen and bacteriological parameters are concerned.

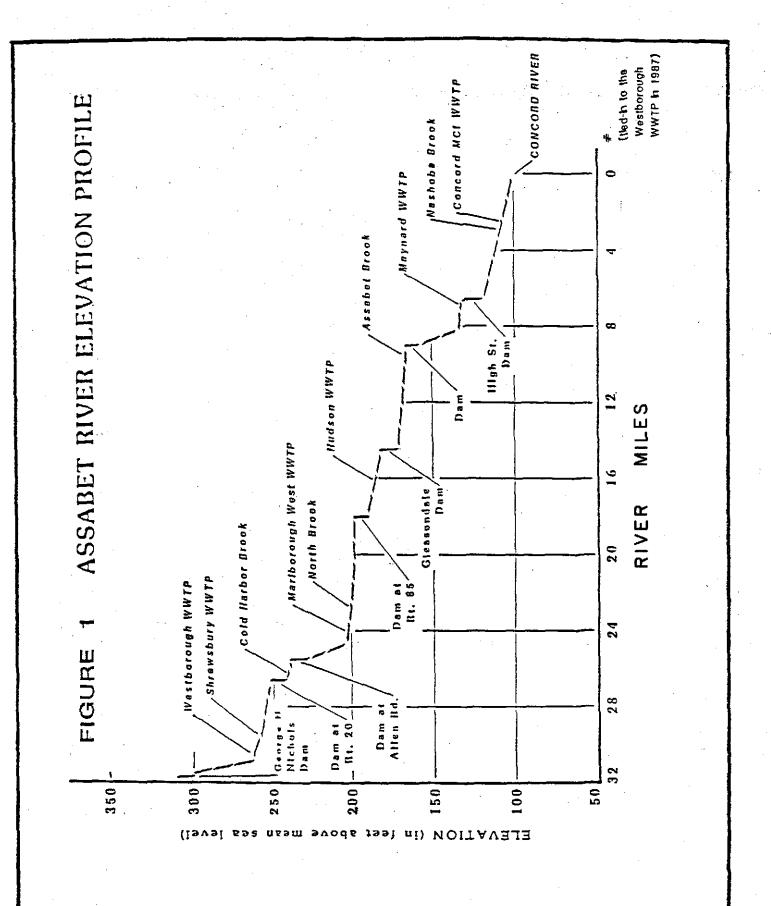
After a short, fast flowing stretch, the river begins its characteristic sluggish "Hocomonco Stream" joins the river just above where the first of five flow. wastewater treatment plants discharges into the Assabet - the town of Westborough Wastewater Treatment Plant (WWTP) (30.2). Shortly downstream the Shrewsbury WWTP discharged to the river until the spring of 1987, when its flows were tied into the Westborough WWTP. The Assabet meanders its way through swamplike lands and flows by a golf course before reaching the next impounded area and dam on Route 20 in Northborough (26.5). Soon, another relatively steep gradient causes the river to accelerate through a small industrial complex. Then, taking a 90° turn, the Assabet enters the "headwater" pool of the Allen Road dam impoundment (25.4). After flowing through pasture lands, the basic pattern of the river is repeated - the Marlborough West WWTP (24.1) coincides with the slowing of the river flow. The river flows through swamplands until the dam at Route 85 in Hudson (18.2). Through Hudson center the flow is constricted by industrial developments on both banks. Passing out of Hudson center the pattern is again repeated - the Hudson WWTP discharges into the Assabet just above the swampland impoundment created by the Gleasondale dam (14.4). Following a short rapid section, the river flows in its characteristic slow meandering style for 4.5 miles through the town of Stow.

Flowing over the American Woolen Dam (9.0) and into the town of Maynard, the river's gradient sharply increases and the flow is channeled through the center of Maynard. The Assabet, for the fourth time, repeats its pattern - flowing into the Powdermill

8

impoundment and receiving the discharge from the Maynard WWTP (6.3). From the Powdermill dam to the confluence with the Sudbury River, the river's gradient is relatively uniform. The Assabet flows through West Concord receiving its final discharge from the Massachusetts Correctional Institution (MCI) at West Concord (2.4). The river slowly reaches the Sudbury River just north of the center of Concord. The confluence of the Assabet and Sudbury rivers produces one main stream the Concord River.

## 1990 ASSABET RIVER BASIN WATER QUALITY CLASSIFICATION\*


| BOUNDARY                                                         | MILE_POINT     | CLASS | OTHER RESTRICTIONS               |
|------------------------------------------------------------------|----------------|-------|----------------------------------|
| Assabet River                                                    |                |       |                                  |
| Source to Westborough STP                                        | 31.8 - 30.4    | В     | Warm Water<br>High Quality Water |
| Westborough STP to<br>outlet to Boones Pond                      | 30.4 - 12.4    | В     | Warm Water                       |
| Outlet of Boones Pond to confluence with Sudbury River           | 12.4 - 0.0     | B     | Warm Water                       |
| Nagog Pond                                                       |                |       |                                  |
| Source to outlet in Acton<br>and those tributaries thereto       | <del>.</del> . | A     | Public Water Supply              |
| Westborough Reservoir                                            |                |       |                                  |
| Source to outlet in Westborough<br>and those tributaries thereto | -              | A     | Public Water Supply              |
| Gates_Pond                                                       |                |       |                                  |
| Source to outlet in Berlin and those tributaries thereto         | -              | A     | Public Water Supply              |
| White Pond                                                       |                |       |                                  |
| Source to outlet in Hudson and those tributaries thereto         | -              | A     | Public Water Supply              |

\* Massachusetts Water Quality Standards, 1990

## TABLE 1 (CONTINUED)

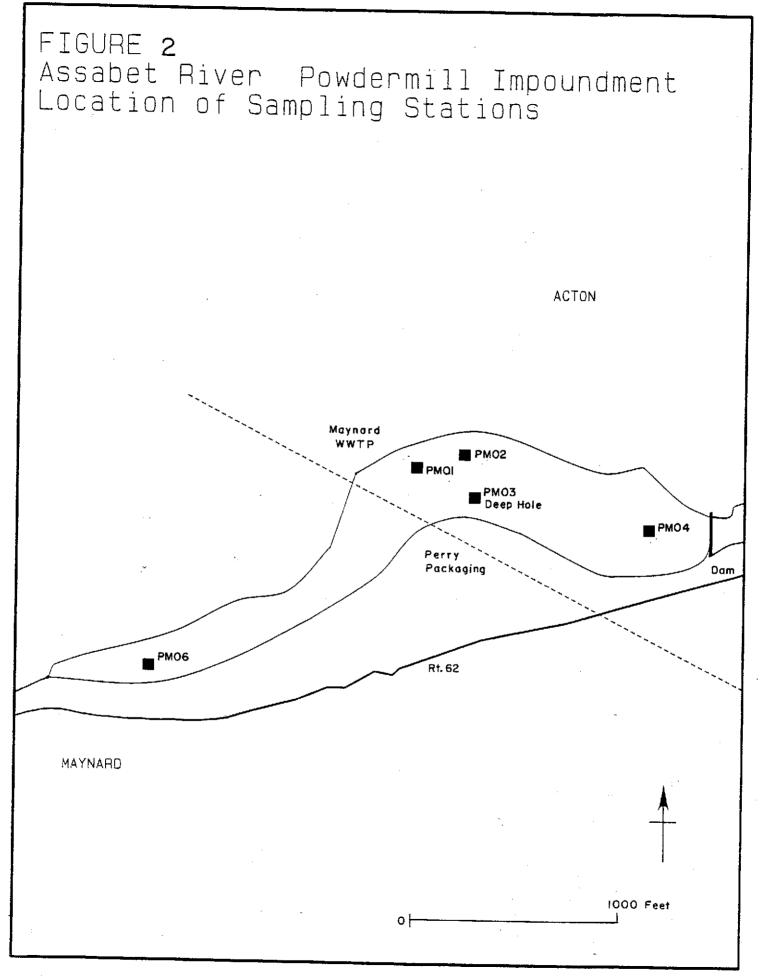
## 1990 ASSABET RIVER BASIN WATER QUALITY CLASSIFICATION\*

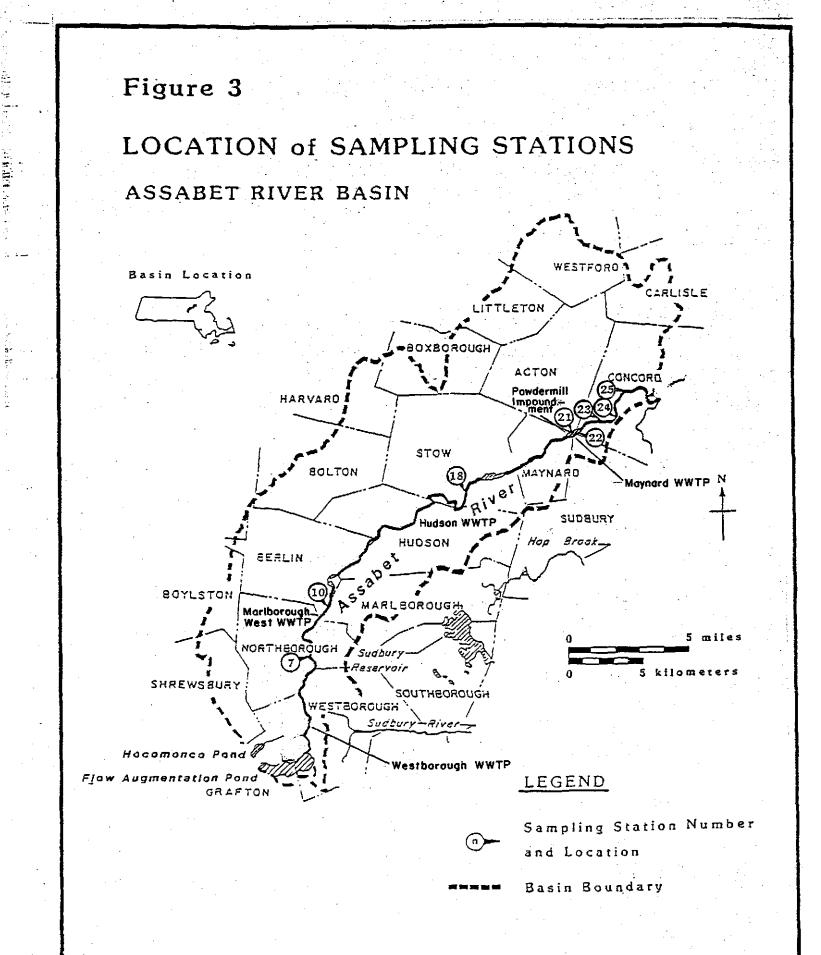
| BOUNDARY                                                                                  | MILE POINT | CLASS | OTHER RESTRICTIONS  |
|-------------------------------------------------------------------------------------------|------------|-------|---------------------|
| <u>Millham Reservoir</u>                                                                  |            |       |                     |
| Source to outlet in Marlborough<br>and those tributaries thereto                          | -          | A     | Public Water Supply |
| <u>Williams Lake</u>                                                                      |            |       | · .                 |
| Source to outlet in Marlborough<br>and those tributaries thereto                          | -          | A     | Public Water Supply |
| Sudbury Reservoir                                                                         |            |       |                     |
| In Westborough, Marlborough,<br>Southborough, Framingham and<br>those tributaries thereto | -          | A     | Public Water Supply |



## 1989 ASSABET RIVER AND POWDERMILL IMPOUNDMENT SURVEYS

## LOCATION OF SAMPLING STATIONS


| STATION |          | RIVER |
|---------|----------|-------|
| NUMBER  | LOCATION | MILE  |
|         |          |       |


#### Assabet River

| AS07 | Above Dam, Route 20, Northborough | 26.5 |
|------|-----------------------------------|------|
| AS10 | Robin Hill Road, Marlborough      | 23.8 |
| AS18 | Boon Road, Stow                   | 12.1 |
| AS21 | Above Powdermill Dam, Acton       | 6.5  |
| AS22 | Route 62, first bridge, Concord   | 6.1  |
| AS23 | Route 62, second bridge, Concord  | 4.6  |
| A524 | Route 62, third bridge, Concord   | 3.3  |
| AS25 | Routes 2/2A, Concord              | 2.6  |

Powdermill Impoundment

| PM01 | 30 ft. downstream of Maynard WWTP, 20 ft         | 6.75 |
|------|--------------------------------------------------|------|
|      | from shore                                       |      |
| PM02 | 20 ft. directly downstream of PM01, 20 ft        | 6.75 |
|      | from shore                                       |      |
| PM03 | Deep hole of Impoundment, across from Perry Pkg. | 6.8  |
| PMO4 | Just upstream of High St. Dam                    | 6.5  |
| PM06 | Upstream of Maynard WWTP, at impoundment inlet   | 6.95 |





POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY DATA

.

#### POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

## FIELD DATA

#### 8-9-89

| Station | Total<br>Depth<br>(M) | Sample<br>Depth<br>(M) | Temp.<br>(C) | pH<br>(Std.<br>Units) | Dissolved<br>Oxygen<br>(mg/l) | Spec.<br>Cond.<br>(µmhos/cm) | Time  |
|---------|-----------------------|------------------------|--------------|-----------------------|-------------------------------|------------------------------|-------|
| PM01    | 1                     | 0                      | 24.5         | 6.7                   | 5.0                           | 298                          | <1225 |
|         |                       | 0.5                    | 23.3         | 6.8                   | 6.3                           | 317                          | <1225 |
| PM01A   |                       | 0                      | 25.1         | 7.2                   | 7.2                           | 298                          | >1225 |
| PM02    | 1                     | 0                      | 24.1         | 6.9                   | 5.3                           | 285                          | <1225 |
|         |                       | 0.5                    | 23.9         | 6.9                   | 4.7                           | 283                          | <1225 |
| PM03    | 2.5                   | 0                      | 23.7         | 7.1                   | 6.2                           | 292                          | 1225  |
|         |                       | 1                      | 23.3         | 7.0                   | 5.8                           | 293                          | 1225  |
|         |                       | 2                      | 22.9         | 6.9                   | 5.3                           | 295                          | 1225  |
| PM04    |                       | 0                      | 24.8         | 7.0                   | 6.5                           | 283                          | >1225 |
|         |                       | 1                      | 23.9         | 7.0                   | 5.8                           | 287                          | >1225 |
|         |                       | 2                      | 23.5         | 6.9                   | 5.5                           | 291                          | >1225 |
|         |                       | 2.5                    | 23.1         | 6.9                   | 5.3                           | <b>29</b> 1                  | >1225 |
| PM06    | 2                     | 0                      | 24.4         | 7.3                   | 8.4                           | 295                          | >1225 |
|         |                       | 1                      | 24.0         | 7.2                   | 7.9                           | 295                          | >1225 |
|         |                       | 2                      | 23.6         | 7.2                   | 7.6                           | 295                          | >1225 |
| AS22    |                       | 0                      | 24.4         | 5.6                   | 6.9                           |                              | 1137  |
| AS23    |                       | 0                      | 25.0         | 6.6                   | 8.8                           |                              | 1154  |
| AS24    |                       | 0                      | 24.4         | 6.4                   | 7.5                           |                              | 1205  |
| AS25    |                       | 0                      | 24.4         | 6.0                   | 7.9                           |                              | 1225  |

.

POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

## TIME-TEMPERATURE (°F)-DISSOLVED OXYGEN (mg/l)

8-11-89

|      | Sample<br>Depth | Time | Temp.<br>(°F) | Dissolved Oxygen<br>(mg/l) |
|------|-----------------|------|---------------|----------------------------|
| PM01 | *(S)urface      | 0630 | 73.5          | 6.5                        |
|      | (B)ottom        | 0630 | 73.5          | 6.4                        |
| PM02 | S               | 0635 | 73.5          | 8.3                        |
|      | В               | 0635 | 73.5          | 8.5                        |
| PM03 | S               | 0640 | 73.5          | 6.5                        |
|      | В               | 0640 | 73.5          | 5.9                        |
| PM04 | S               | 0650 | 73.5          | 8.2                        |
|      | В               | 0650 | 73.5          | 6.9                        |
| PM06 | S               | 0703 | 73.5          | 6.6                        |
|      | В               | 0703 | 73.5          | 6.8                        |
| AS22 | s               | 0510 | 75.0          | 8.7                        |
| AS23 | S               | 0520 | 74.0          | 6.7                        |
| AS24 | S               | 0540 | 74.0          | 6.5                        |
| AS25 | S               | 0550 | 73.5          | 6.7                        |

18

## POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

## RESULTS OF LABORATORY ANALYSES

## 8-9-89

|         | BOD <sub>5</sub><br>(mg/l) | pH<br>(stand. units) | Chloride<br>(mg/l) | Fecal Coliform<br>Bacteria<br>(#/100ml) |
|---------|----------------------------|----------------------|--------------------|-----------------------------------------|
| PM01    | 4.8                        | 7.1                  | 51                 | 20                                      |
| PMO3(T) | 1.5                        | 7.1                  | 54                 | 320                                     |
| PM03(B) | 2.4                        | 7.1                  | 54                 |                                         |
| PM04    | 3.6                        | 7.2                  | 51                 | 150                                     |
| PM06    | 2.4                        | 7.3                  | 55                 | 310                                     |
| AS22    | 2.1                        | 7.4                  | 52                 | 160                                     |
| AS23    | 3.0                        | 7.6                  | 52                 | 120                                     |
| AS24    | 2.7                        | 7.4                  | 51                 | 80                                      |
| AS25    | 2.4                        | 7.9                  | 50                 | 340                                     |

## POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

## NUTRIENT DATA (mg/l)

## 8-9-89

|         | Total<br>Kjeldahl-N | Ammonia-<br>Nitrogen | Nitrate-<br>Nitrogen | Phosphorus |
|---------|---------------------|----------------------|----------------------|------------|
| PM01    | 1.3                 | 1.1                  | 0.85                 | 1.1        |
| PMO3(T) | 0.55                | 0.03                 | 0.47                 | 0.39       |
| PM03(B) | 0.64                | 0.20                 | 0.52                 | 0.46       |
| PM04    | 0.64                | 0.17                 | 0.43                 | 0.45       |
| PM06    | 0.58                | 0.04                 | 0.58                 | 0.40       |
| AS22    | 0.58                | 0.11                 | 0.48                 | 0.44       |
| AS23    | 0.63                | 0.04                 | 0.65                 | 0.44       |
| AS24    | 0.71                | 0.10                 | 0.73                 | 0.45       |
| AS25    | 0.61                | 0.05                 | 0.59                 | 0.36       |

## POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

#### RESULTS OF LABORATORY ANALYSES

#### 8-9-89

## (All units in mg/1 unless noted)

|         | Alkalinity | Hardness | Suspended<br>Solids | Total<br>Solids | Turbidity<br>(NTU) |  |
|---------|------------|----------|---------------------|-----------------|--------------------|--|
| PM01    | 36         | 43       | 4.0                 | 180             | 1.2                |  |
| PMO3(T) | 31         | 41       | <1.0                | 170             | 0.9                |  |
| PMO3(B) | 32         | 43       | 2.0                 | 180             | 1.1                |  |
| PMO4    | 31         | 43       | <1.0                | 170             | 1.2                |  |
| PM06    | 31         | 43       | 2.5                 | 190             | 0.9                |  |
| AS22    | 31         | 43       | 2.0                 | 160             | 1.1                |  |
| AS23    | 30         | 46       | 1.0                 | 170             | 1.1                |  |
| AS24    | 30         | 55       | 1.0                 | 170             | 1.2                |  |
| AS25    | 32         | 43       | 2.0                 | 170             | 1.4                |  |

## POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

#### POWDERMILL IMPOUNDMENT TROPHIC STATUS

| <u>Parameter</u>              | Value                | Severity Points*   |
|-------------------------------|----------------------|--------------------|
| Hypolimnetic dissolved oxygen | 5.3 mg/l             | 0                  |
| Transparency                  | 2.6 m                | 2                  |
| Phytoplankton                 | 439 cells/ml         | 1                  |
| $NH_3 + NO_3$                 | .72 mg/1             | 3                  |
| Total Phosphorus              | 0.45 mg/l            | 3                  |
| Aquatic macrophytes           | very dense           | 3                  |
|                               |                      | ·                  |
|                               | Total Severity Point | s 12 <sup>**</sup> |

\* Each category ranges from 0 to 3 points, with 0 as least severe, and 3 as most severe.

\*\* 12 points is considered eutrophic, particularly in as shallow an area as the Powdermill Impoundment.

## POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

## METALS DATA (mg/l)

#### 8-9-89

|         | Al    | Cđ    | Cr    | Cu    | Fe   | Mn   | Pb    | Ní    | Ag    | Zn    |
|---------|-------|-------|-------|-------|------|------|-------|-------|-------|-------|
|         | <0.05 | <0.02 | <0.03 | <0.02 | 0.24 | 0.04 | <0.05 | <0.03 | <0.02 | <0,02 |
| РМОЗ(Т) |       | <0.02 | <0.03 | <0.02 | 0.18 | 0.02 | <0.05 | <0.03 | <0.02 | <0.02 |
| PM03(B) | 0.07  | <0.02 | <0.03 | <0.02 | 0.27 | 0.04 | <0.05 | <0.03 | <0.02 | 0.08  |
| РМ04    | <0.05 | <0.02 | <0.03 | <0.02 | 0.26 | 0.04 | <0.05 | <0.03 | <0.02 | <0.02 |
| РМ06    | 0.15  | <0.02 | <0.03 | <0.02 | 0.30 | 0.03 | <0.05 | <0.03 | <0.02 | 0.16  |
| AS22    | 0.18  | <0.02 | <0.03 | <0.02 | 0.37 | 0.06 | <0.05 | <0.03 | <0.02 | 0.35  |
| AS23    | <0.05 | <0.02 | <0.03 | <0,02 | 0.20 | 0.08 | <0.05 | <0.03 | <0.02 | 0.19  |
| AS24    | <0.05 | <0.02 | <0.03 | <0.02 | 0.21 | 0.02 | <0.05 | <0.03 | <0.02 | 0.02  |
| AS25    | <0.05 | <0.02 | <0.03 | <0.02 | 0.30 | 0.09 | <0.05 | <0.03 | <0.02 | <0.02 |

## POWDERMILL IMPOUNDMENT/ASSABET RIVER SURVEY

#### SEDIMENT DATA

#### 8-9-89

## (All units in mg/kg dry weight unless noted)

|                                       | PM01  | PM02    | PM03   | PM06   |
|---------------------------------------|-------|---------|--------|--------|
| Total Volatile                        | 15    | 44      | 15     | 7      |
| Solids (%)<br>Total Kjeldahl-Nitrogen | 4,100 | 17,510  | 2,570  | 1,280  |
| Total Phosphorus                      | 1,640 | 4,390   | 1,640  | 840    |
| Aluminum                              | 5,400 | 10,400  | 7,500  | 6,500  |
| Cadmium                               | 2.5   | 10      | 2.5    | 2.0    |
| Chromium                              | 365   | 850     | 115    | 38     |
| Copper                                | 2,250 | 11,500  | 280    | 80     |
| Iron                                  | 6,500 | 14,500  | 15,500 | 19,000 |
| Lead                                  | 440   | 3,250   | 230    | 150    |
| Manganese                             | 75    | 240     | 600    | 550    |
| Mercury                               |       | <0.0002 |        |        |
| Nickel                                | 13    | 55      | 90     | 65     |
| Silver                                | 15    | 240     | 2.5    | <1.0   |
| Zinc                                  | 35.0  | 2,000   | 285    | 235    |

WASTEWATER TREATMENT PLANT/ASSABET RIVER SURVEY DATA

## WASTEWATER TREATMENT PLANT/ASSABET RIVER SURVEY

## FIELD DATA

8-23-89

| Station | Time | Temp.<br>(°F) | pH<br>(stand. units) | Dissolved Oxygen<br>(mg/l) |
|---------|------|---------------|----------------------|----------------------------|
| AS07    | 920  | 74            | 5.8                  | 4.2                        |
| AS10    | 1016 | 74            | 6.3                  | 4.9                        |
| AS18    | 1115 | 75.5          | 5.6                  | 4.1                        |
| AS21    | 1221 | 79            | 6.2                  | 5.7                        |

## WASTEWATER TREATMENT PLANT/ASSABET RIVER SURVEY

### RIVER STATIONS

#### RESULTS OF LABORATORY ANALYSES

## 8/23/89

## (All units in mg/l unless noted)

|                             | AS07   | AS10   | AS18   | AS21   |
|-----------------------------|--------|--------|--------|--------|
| BODs                        | 3.3    | 4.2    | 2.4    | 3.9    |
| pH (stand.units)            | 6.9    | 7.0    | 6.7    | 7.0    |
| Alkalinity                  | 39     | 38     | 26     | 23     |
| Hardness                    | 52     | 44     | 39     | 35     |
| Suspended Solids            | 1.0    | 6.0    | 3.0    | 3.5    |
| Total Solids                | 230    | 190    | 180    | 150    |
| Turbidity (NTU)             | 1.6    | 2.5    | 1.9    | 1.6    |
| Total Kjeldahl-<br>Nitrogen | 2.0    | 1.1    | 0.82   | 0.76   |
| Ammonia-Nitrogen            | 0.28   | 0.45   | 0.09   | 0.09   |
| Nitrate-Nitrogen            | 1.5    | 0.60   | 0.86   | 0.45   |
| Total Phosphorus            | 1.3    | 0.62   | 0.44   | 0.37   |
| Chloride -                  | 67     | 54     | 51     | 43     |
| Fecal Coliform<br>(#/100ml) | 60     | 100    | 120    | 360    |
| Aluminum                    | <0.05  | 0.06   | 0.05   | <0.05  |
| Cadmium                     | <0.001 | <0.001 | 0.004  | <0.001 |
| Chromium                    | 0.001  | 0.001  | 0.001  | <0.001 |
| Copper                      | 0.007  | 0.011  | 0.004  | 0.005  |
| Iron                        | 0.28   | 0.71   | 0.82   | 0.70   |
| Manganese                   | 0.04   | 0.18   | 0.13   | 0.13   |
| Lead                        | <0.002 | <0.002 | <0.002 | <0.002 |
| Nickel                      | 0.004  | 0.016  | 0.008  | 0.007  |
| Silver                      | <0.001 | <0.001 | <0.001 | <0.001 |
| Zinc                        | 0.012  | 0.070  | 0.043  | 0.017  |

## WASTEWATER TREATMENT PLANT/ASSABET RIVER SURVEY

## WASTEWATER TREATMENT PLANT EFFLUENTS

## RESULTS OF LABORATORY ANALYSES

(All units in mg/l unless noted)

|                  | 8/22-23/89 |             |         | 8/8-9/89 |         |
|------------------|------------|-------------|---------|----------|---------|
|                  | Westboro   | Marlboro W. | Hudson  | Maynard  | Maynard |
|                  | WWTP       | WWTP        | WWTP    | WWTP     | WWTP    |
| BOD <sub>5</sub> | 7.8        | 38          | 15      | 50       | 13      |
| pH (stand.units) | 7.3        | 7.4         | 7.4     | 7.6      | 7.8     |
| Alkalinity       | 65         | 130         | 43      | 93       | 110     |
| Hardness         | 78         | 179         | 74      | 48       | 44      |
| Suspended Solids | 30         | 13          | 14      | 14       | 8.0     |
| Total Solids     | 390        | 480         | 570     | 300      | 300     |
| Turbidity (NTU)  | 1.4        | 4.0         | 2.7     | 3.6      | 5.3     |
| Total Kjeldahl-  | 0.60       | 6.2         | 3.0     | 14       | 34      |
| Nitrogen         | 0.07       |             | 0.00    | 4 7      | 10      |
| Ammonia-Nitrogen | 0.07       | 5.2         | 0.03    | 4.3      | 18      |
| Nitrate Nitrogen | 3.0        | 0.45        | 14      | 14       | 3.4     |
| Total Phosphorus | 4.5        | 2.4         | 5.0     | 6.3      | 7.1     |
| Chloride         | 120        | 120         | 170     | 59       | 62      |
| Fecal Coliform   | 20         | <20         | 20      | 20       | <20     |
| (#/100ml)        |            |             |         |          |         |
| Dissolved Oxygen |            |             |         |          | 6.5     |
| Aluminum         | <0.05      | 0.09        | 0.18    | <0.05    | 0.05    |
| Cadmium          | <0.001     | <0.001      | <0.001  | <0.001   | <0.02   |
| Chromium         | 0.001      | 0.004       | 0.008   | 0.003    | <0.03   |
| Copper           | 0.026      | 0.011       | 0.13    | 0.04     | 0.11    |
| Iron             |            | 0.14        | 0.24    | 0.17     | 0.26    |
| Manganese        | 0.04       | 0.09        | 0.04    | 0.08     | 0.06    |
| Mercury          | <0.0002    | <0.0002     | <0.0002 | <0.0002  |         |
| Lead             | <0.002     | 0.006       | 0.002   | <0.002   | <0.05   |
| Nickel           | 0.003      | 0.11        | <0.03   | <0.03    | <0.03   |
| Silver           | <0.001     | <0.001      | <0.001  | <0.001   | <0,02   |
| Zinc             | 0.076      | 0.073       | 0.071   | 0.046    | 0.08    |
| Flow (MGD)       | 3.77       | 1.683       | 2.14    | 1.253    | 1.162   |

## 1989 ASSABET RIVER BASIN

## U.S.G.S. GAGE AT MAYNARD

## FLOW DATA (cfs)

| Date | Flow |
|------|------|
| 8-7  | 68   |
| 8-8  | 95   |
| 8-9  | 99   |
| 8-10 | 90   |
| 8-11 | 87   |
| 8-21 | 156  |
| 8-22 | 142  |
| 8-23 | 123  |
|      |      |

## APPENDIX A

## ANALYTICAL METHODS USED AT LAWRENCE EXPERIMENT STATION

| <u>PARAMETER</u><br>(Water Column) | METHOD                                                                                                                    | REPORTED AS            |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------|
| Dissolved Oxygen                   | Azide modification of Winkler<br>method. 0.0375 N sodium thio-<br>sulfate titrant, 300 ml sample<br>EPA Method 360.2      | mg/l D.O.              |
| BOD                                | 5-day oxygen depletion at 20°C<br>EPA Method 405.1                                                                        | mg/l BOD               |
| ЪН                                 | Electrometric, glass indicator,<br>silver chloride reference<br>EPA Method 150.1                                          | pH Standard Units      |
| Total Alkalinity                   | 0.02 N sulfuric acid potentio-<br>metric titration to pH 4.5,<br>Orion Model 701, digital pH<br>meter<br>EPA Method 310.1 | mg/l CaCO <sub>3</sub> |
| Phenolphthalein<br>Alkalinity      | 0.02 N sulfuric acid potentio-<br>metric titration to pH 8.3<br>Orion Model 701, digital pH<br>meter                      | mg/l CaCO <sub>3</sub> |
| Acidity                            | 0.02 N sodium hydroxide potentio-<br>metric titration. Orion Model<br>701, digital pH meter<br>EPA Method 305.1           | mg/l CaCO <sub>3</sub> |
| Suspended Solids                   | Filtration through standard<br>glass fiber filter paper. Residue<br>dried at 103-105°C. Gravimetric<br>EPA Method 160.2   | mg/l S.S.              |
| Total Solids                       | Evaporation to dryness at 103-<br>105°C. Gravimetric<br>EPA Method 160.3                                                  | mg/l T.S.              |

.

## APPENDIX A (CONTINUED)

## ANALYTICAL METHODS USED AT LAWRENCE EXPERIMENT STATION

| <u>PARAMETER</u><br>Water Column) | METHOD                                                                                                                                                                                                                                                                     | REPORTED AS                |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Chloride                          | Argentometric (titration with<br>silver nitrate)<br>EPA Method 325.3                                                                                                                                                                                                       | mg/l Cl                    |
| Specific<br>Conductance           | Wheatstone Bridge type meter.<br>Yellow Springs Instrument<br>conductivity bridge, Model 31<br>EPA Method 120.1                                                                                                                                                            | umhos/cm                   |
| Total Kjeldahl-<br>Nitrogen       | Acid digestion using Technicon<br>BD-40 Block Digester. Colori-<br>metric analysis (reaction of<br>ammonia, sodium salicylate,<br>sodium nitroprusside, and sodium<br>hypochlorite in buffered alkaline<br>medium) using Technicon Auto<br>Analyzer II<br>EPA Method 351.3 | mg/l TKN                   |
| Ammonia-Nitrogen                  | Phenate method, automated.<br>Colorimetric analysis using<br>Technicon Auto Analyzer II<br>EPA Method 350.1                                                                                                                                                                | mg/l NH <sub>3</sub> -N    |
| Nitrate-Nitrogen                  | Hydrazine reduction method, auto-<br>mated. Colorimetric analysis<br>using Technicon Auto Analyzer II<br>EPA Method 351.3                                                                                                                                                  | mg/l NO <sub>3</sub> -N    |
| Total Phosphorus                  | Acid digestion using Technicon<br>BD-40 Block Digester. Ascorbic<br>acid reduction colorimetric<br>method using Technicon Auto<br>Analyzer II<br>EPA Method 365.4                                                                                                          | mg/l P                     |
| Fecal Coliform                    | Membrane filter technique                                                                                                                                                                                                                                                  | Fecal coliforms<br>/100 ml |

## APPENDIX A (CONTINUED)

•

## ANALYTICAL METHODS USED AT LAWRENCE EXPERIMENT STATION

| <u>PARAMETER</u><br>(Water Column)                                                        | METHOD                                                                                                                                                                                                               | <u>REPORTED AS</u> |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Total Oil and Grease                                                                      | Partition-Gravimetric Method<br>EPA Method 413.1                                                                                                                                                                     | mg/l               |
| Aluminum                                                                                  | Inductively Coupled Argon Plasma<br>technique (ICAP). Perkin Elmer<br>EPA Method 200.7                                                                                                                               | mg/1.              |
| Arsenic                                                                                   | Atomic Absorption Spectrophoto-<br>metry. Graphite furnace.<br>Instrumentation Laboratory Model<br>951<br>EPA Method 206.2                                                                                           | mg/1               |
| Cadmium, chromium,<br>copper, iron,<br>lead, nickel,<br>silver, zinc,<br>hardness (Ca+Mg) | Atomic Absorption Spectrophoto-<br>metry. Air-acetylene flame.<br>Perkin-Elmer Zeeman Model 5100<br>EPA Methods Cd - 213.2, Cr - 218.1,<br>Cu - 220.1, Fe - 236.1, Pb - 239.1,<br>Ni - 249.1, Ag - 272.1, Zn - 289.1 | mg/l               |
| Mercury                                                                                   | Cold Vapor Method<br>EPA Method 245.1                                                                                                                                                                                | mg/l               |
| Volatile Organics                                                                         | Purge and trap GC/MS<br>EPA Method 624                                                                                                                                                                               | ug/l               |
| Acid and Base/Neutral<br>Extractables                                                     | Extraction with methylene chloride<br>followed by GC/MS<br>EPA Method 625                                                                                                                                            | ug/l               |
| Polychlorinated<br>biphenyls                                                              | Organochlorine Pesticides<br>and PCBs. Extraction with<br>methylene chloride followed<br>by GC<br>EPA Method 608                                                                                                     | ug/l               |

## APPENDIX A (CONTINUED)

### ANALYTICAL METHODS USED AT LAWRENCE EXPERIMENT STATION

| <u>PARAMETER</u><br>(Sediment)                      | METHOD                                                                                                                                                                                                                                                                     | REPORTED AS          |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| % Volatile Solids                                   | Residue from Total Solids<br>determination ignited at 550 <sup>0</sup> C.<br>Gravimetric<br>EPA Method 160.4                                                                                                                                                               | % Volatile<br>Solids |
| Total Kjeldahl-<br>Nitrogen                         | Acid digestion using Technicon<br>BD-40 Block Digester. Colori-<br>metric analysis (reaction of<br>ammonia, sodium salicylate,<br>sodium nitroprusside, and sodium<br>hypochlorite in buffered alkaline<br>medium) using Technicon Auto<br>Analyzer II<br>EPA Method 351.3 | mg/kg dry weight     |
| Total Phosphorus                                    | Acid digestion using Technicon<br>BD-40 Block Digester. Ascorbic<br>acid reduction colorimetric<br>method using Technicon Auto<br>Analyzer II<br>EPA Method 365.4                                                                                                          | mg/kg dry weight     |
| Aluminum                                            | Inductively Coupled Argon Plasma<br>technique (ICAP). Perkin Elmer<br>EPA Method 200.7                                                                                                                                                                                     | mg/kg dry weight     |
| Arsenic, chromium,<br>copper, lead,<br>nickel, zinc | Atomic Absorption Spectrophoto-<br>metry. Air-acetylene flame.<br>Perkin-Elmer Zeeman Model 5100<br>EPA Methods As - 206.2, Cr - 218.1,<br>Cu - 220.1, Ni - 249.1, Zn - 289.1                                                                                              | mg/kg dry weight     |
| Mercury                                             | Cold Vapor Method<br>EPA Method 245.1                                                                                                                                                                                                                                      | mg/kg dry weight     |
| Polychlorinated<br>biphenyls                        | Organaochlorine Pesticides<br>and PCBs SW-846<br>EPA Method 8080                                                                                                                                                                                                           | ug/g dry weight      |
| Polycyclic aromatic<br>hydrocarbons                 | EPA Method 8270                                                                                                                                                                                                                                                            | ug/g dry weight      |

#### APPENDIX B

#### CLASSIFICATION OF SLUDGE FOR LAND APPLICATION

#### 310 CMR 32.00

ALLOWABLE CONCENTRATIONS

| (mg/kg) |                                                                                    | AT 3 4 4 1 T T                                                   |                                                                                  |
|---------|------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|
| CLASS 1 | CLASS 11                                                                           | CLASS 111                                                        |                                                                                  |
| 2       | 2-25                                                                               | >25                                                              |                                                                                  |
| <300    | 300-1000                                                                           | >1000                                                            |                                                                                  |
| <200    |                                                                                    | >200                                                             |                                                                                  |
| <2500   |                                                                                    | >2500                                                            |                                                                                  |
| <1000   |                                                                                    | >1000                                                            |                                                                                  |
| <1000   |                                                                                    | >1000                                                            |                                                                                  |
| <10     |                                                                                    | >10                                                              |                                                                                  |
| <10     |                                                                                    | >10                                                              |                                                                                  |
| <300    |                                                                                    | >300                                                             |                                                                                  |
| <2      | 2-10                                                                               | >10                                                              |                                                                                  |
| •       |                                                                                    |                                                                  |                                                                                  |
| <1      | 1-10                                                                               | >10                                                              |                                                                                  |
|         |                                                                                    |                                                                  |                                                                                  |
|         |                                                                                    |                                                                  |                                                                                  |
|         | CLASS I<br>2<br><300<br><200<br><2500<br><1000<br><100<br><10<br><10<br><300<br><2 | CLASS I         CLASS II           2         2-25           <300 | CLASS I         CLASS II         CLASS III           2 $2-25$ >25           <300 |